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Abstract

Sometimes the normal course of events is disrupted by a particularly swift and profound
change. Historians have often referred to such changes as “revolutions” and, though they
have identified many of them, they have rarely supported their claims with statistical evi-
dence. Here we present a method to identify revolutions based on a measure of the multivari-
ate rate of change called Foote Novelty. We define revolutions as those periods of time when
the value of this measure, F , can, by a non-parametric test, be shown to be significantly
greater than the background rate. Our method also identifies conservative periods when the
rate of change is unusually low. Importantly, our method permits searching for revolutions
over any time scale that the data permit. We apply it to several quantitative data sets
that capture long-term political, social and cultural changes and, in some of them, identify
revolutions, both well known and not. Our method is a general one that can be applied to
any phenomenon captured by multivariate time series data of sufficient quality.



What is a revolution?

It seems that the word “revolution” was first applied to sublunary events when parliamen-

tarians, aided by the Dutch, deposed James II from the English throne and so brought about

the Glorious Revolution. Since then, it has been applied ever more widely (Cohen 1986).

Responding to the French Revolution of 1789, Friederich Schlegel called for an Aesthetic

Revolution in poetry, and so extended the term beyond politics (Heumakers 2015). In the

latter half of the 19th century — an age of revolutions — John Stuart Mill, Karl Marx and

Arnold Toynbee, following a French coinage, wrote of the Industrial Revolution (Bezanson

1922). In the 1950s Alexandre Koyré (1957), Herbert Butterfield (1950), A. R. Hall (1954)

and Thomas Kuhn (1957), descried the Scientific Revolution (Cohen 1994). In The Structure

of Scientific Revolutions, Kuhn (1972) generalized the idea, arguing that science advanced,

if it advanced at all, by revolutions. The Darwinian Revolution was swiftly identified (Ruse

1979; Himmelfarb 1996), as were many others. Indeed, Kuhn’s book prompted something of

a revolution in scientific discourse, as scientists themselves took to identifying, or calling for,

“paradigm shifts” — Kuhn’s term for a revolution — in their fields. A search of all articles

indexed by the Web of Science in 2017 reveals more than two thousand that do so, though

many of the purported revolutions seem quite modest in scope (e.g., Seward 2017; Raoult

2017; Lowenstein and Grantham 2017; Lonne 2017).

For all that, revolutions are hard to pin down. Upon close inspection they often seem to

shrink. Pick a revolution, even a famous and well-documented one, and you can be sure to

find scholars who have sought to cut it down to size or even deny that it happened at all.

“The drastic social changes imputed to the Revolution, seem less clear-cut or not apparent

at all.” — thus Simon Schama (1989) on how his generation of historians viewed the impact

of the French Revolution. “There was no such thing as the Scientific Revolution, and this is

a book about it.” — so Steve Shapin (1996), in paradoxical mode, on early modern science.

Evolutionary biologists may be surprised to learn that the Darwinian Revolution has its

skeptics too (Hodge 2005; Bowler 1988).

The difficulty of identifying revolutions has plagued the historical natural sciences as

well. In the 1980s archaeologists labelled the sudden appearance, fifty thousand years ago,

of culture as the Human Revolution (Mellars and Stringer 1989). It wasn’t long before

others had dismissed it as the “revolution that wasn’t” (Mcbrearty and Brooks 2000). For

much of his life Stephen Jay Gould (2002) argued that the Darwinian Revolution had run its

course and that evolutionary biology needed another. (But one not to be confused with the

broader Paleobiological Revolution of the 1970s and 80s which he helped shape (Sepkoski

2012; Sepkoski and Ruse 2009).) The coping stone of Gould’s new paradigm, an unstable
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edifice, was the theory of punctuated equilibrium that he proposed with Niles Eldredge

(Eldredge and Gould 1972). This theory, shorn of its theoretical structure, postulated that

change in fossil lineages is itself best described as a series of revolutions rather than gradual

evolution. It may seem like a simple matter to decide which, but the ensuing decades-long

quarrel among palaeontologists about what the fossils show has proved otherwise (Pennel

et al. 2013). Unsurprisingly given its fame, the term “punctuated equilibrium” has flown

free from biology and now appears in fields as remote from palaeontology as management

science and policy research (e.g., Flink 2017; Fowler et al. 2017; De Ruiter and Schalk 2017).

In these fields the term has lost its deeper meaning altogether and is just another way to

express the existence, or hope, of revolutions.

The problem is clear. Great revolutions may entail change in many dimensions — ideas,

wealth, social roles, political structures, the composition of assemblages of artefacts and

species or else their features — but to varying degrees, at varying rates, and with varying

starts and ends. A revolution’s visibility, then, depends on where you look. Even when

considering the same data, some scholars will see discontinuity where others see continuity

— it may be merely a matter of temperament — in the absence of an objective method for

distinguishing the two, there is no way to know which of their accounts is more true.

In this paper we give the idea of a revolution a statistical foundation. We take the view

that, for some set of characteristics of a population that change over time, a revolution is sim-

ply a statistically significant local increase in their rate of change relative to the background

rate. Given this, our method depends on identifying correlated changes in multivariate time

series by means of a non-parametric permutation test. Our work is related to previous work

on multivariate time series segmentation (Omranian et al. 2015; Preuss et al. 2015), but

differs from these in that it uses the self-similarity of individual series across neighbouring

periods (i.e. the local rate of change) to classify time points into “revolutionary” or “conser-

vative” periods, rather than segmenting series into self-contained windows where the series

are assumed to follow a time-invariant (typically parametric) relationship. We have previ-

ously introduced our method while applying to the evolution of American popular music

(Mauch et al. 2015). Here we refine its statistical basis, apply it to several large data sets

that capture changes in political, social and cultural systems over time, and identify a variety

of revolutions that are well known, as well as some that are not.

Detecting revolutions

A method for detecting revolutions should consider many characteristics of a population

simultaneously, that is, be underpinned by a multivariate metric of change. One such method,
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used in signal processing, is based on a measure called Foote Novelty (Foote 2000), which is

based on the collection of pairwise distances between values of the series at different temporal

separations, known as a distance matrix.

To understand the rationale behind Foote Novelty, consider the one-dimensional time

series (1, 2, 2, 1, 5, 4, 5, 4, 4) and its distance matrix (Figure 1). It has an obvious change point

after the fourth element, with data before this change (1, 2, 2, 1) relatively homogeneous, and

the data afterwards (5, 4, 5, 4, 4) also exhibiting minimal variability. If a distance matrix is

calculated from the original data, these two periods manifest as distinct blocks of low local

variation along the main diagonal (the darker shaded blocks in Figure 1). By contrast,

the pairwise distances between data points before and after such a change are considerable,

resulting in two off-diagonal blocks of high-cross variability (the lighter shaded blocks in 1)

in the distance matrix. The point of intersection of all four of these blocks occurs at the

point of change and, it was Foote’s insight that such junctions have the appearance of a

checkerboard.

In order to assign high values to time periods that appear checkboard-like and low values

to others, Foote devised a kernel that qualitatively resembles a checkerboard. This kernel

is composed of two pairs of blocks of size k — the half-width — with the diagonal blocks

equal to -1 and the off-diagonal components equal to +1. For example, the kernel for k = 2

is given by,

C2 =


1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1



=


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


︸ ︷︷ ︸

cross variability

−


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0


︸ ︷︷ ︸

local variability

This kernel is moved along the main diagonal and the elementwise product taken of the

matrix and the values it overlaps (Figure 1) to calculate a Foote Novelty score, which we

argue meters the “revolutionary potential” of a given point in time. Foote Novelty at a time

t can, hence, be represented mathematically by the following summation,

F k
t =

k−1∑
i=−k

k−1∑
j=−k

Ck
ij Dt+i,t+j,
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where Ck
ij is the elementwise representation of the Foote kernel Ck with half-width k and

Dij represents the elements of the temporally-ordered distance matrix D.

The off-diagonal blocks of Ck contribute positively to this score because they indicate

differences in the series before and after the time point under consideration (that in the mid-

dle of the kernel) and, hence, can be thought of as calculating the series’ “cross-variability”

at that time. Since we have no a priori knowledge of the magnitude of revolutions, changes

in a series over a period of time are evidence for a revolution only in comparison with a base

rate of change. A revolution is characterised by periods of relative stasis punctuated by a

period when significant change occurs. If considerable change occurs in either the period

immediately preceding the proposed revolutionary epoch or that following it then — at the

time scale indicated by the kernel half width — a revolution has not occurred. The diagonal

component’s of Foote’s kernel capture this aspect of a revolution’s definition by allowing

any local variation in the pre- or post-revolutionary period to diminish the magnitude of the

revolution.

For an example of Foote Novelty calculation for our synthetic one-dimensional time series

see Figure 1. Note that indices for which the kernel C does not completely overlap with the

distance matrix D are omitted. In practice, we use a kernel with two minor modifications.

First, we follow Foote in imposing a Gaussian taper with a standard deviation of 0.4k, to

remove edge effects. This gives distances closer to the target time point more weight than

those further away. Second, in order to have a central point of reference, we add a “cross” of

zeros between the blocks of the kernel C. As a result, the size of the whole kernel is 2k + 1,

and the value F k
t corresponds precisely to the kernel centered at t. Assuming that D is large

(e.g., 100 × 100 time points) relative to C (e.g., 4 × 4), varying t amounts to sliding kernel

C along the central diagonal of distance matrix D, calculating F as we go.

In real data, F k
t is generally positive and varies as the underlying variables fluctuate in

value. We therefore define revolutions as periods when its value is statistically significantly

higher than in the rest of the series. To determine this we compare the observed F k
t values

to the distribution of F k
t values obtained from randomly permuting the distance matrix. In

our original test we permuted the distance matrix on its axes (Mauch et al. 2015); here,

following a suggestion by T. Underwood, H. Long, R. J. So, and Y. Zhu (pers. comm.), we

permute on the diagonals.

The kernel half-width, k, can be as small as 1 or as large as the data allow, but different

k show different aspects of change. Foote Novelty acts rather like a microscope. Small k

values zoom in on short-term heterogeneities that large k values may obliterate, and large k

values may reveal long-term variation invisible at smaller fields of view. A sustained period

of rapid change will tend to produce revolutionary signals at many different k, but more
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Figure 1: Example time series with distance matrix. The 4 × 4 matrix marked with a blue box shows the natural
checkerboard structure of distances at points of rapid change. The corresponding Foote Novelty value F 2

4 is also coloured blue.
The offset, present in the original Foote formulation, between the center of the box and the corresponding coordinates of the
novelty function is corrected for by our centered formulation.

complex patterns of rate variation will result in conflicting signals. For example, a large

k may well identify a single, long, revolution where a smaller one identifies two or more.

The shifting picture of the rate landscape that emerges as we adjust the focus of our Foote

Novelty microscope is not a weakness of the method, but a consequence of making the scale

of analysis explicit. In practice we examine all half-widths that the data allow and identify

revolutions by their consistency in a given region.

Any significance value is, of course, arbitrary and we would also like a general picture of

fluctuations in the rate of change regardless of whether or not they are statistically significant.

To this end we propose an index, Rt, which captures the relative rate of change at a given

time point, t. Assuming a set K of desired kernel half-widths, this index is constructed by

first standardizing every F k
t estimate by the average over all valid time points for its half-

width, F̄ k, and then averaging the standardized values over all k ∈ K estimated for that

time point to give a single value:

Rt =
1

|K|
∑
k∈K

F k
t

F̄ k

If Rt > 1 then the rate of change at given time point is greater than the average rate of

change in the entire series; if Rt < 1 smaller.

Having identified a revolution, we’d also like to know which variables contribute to it.

One simple way to find out involves removing variables from the data set one at time and

re-running the analysis. Variables which, when removed, yield fewer statistically significant

F k
t in a given revolution contribute to it; those which yield more obscure it. Joint effects

can be tested by removing combinations of variables.
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Figure 2A shows the method in action on simulated data. We simulated twenty stationary

series, each of which represents a measured variable, for 100 time points (Figure 2A first row).

Starting at time point 40 we introduced a revolution by allowing the variables to undergo a

directional change for ten generations after which they became stationary again. The rate

discontinuity can be clearly seen in the distance matrix (Figure 2A second row). To identify

the revolution we estimated F k
t for all kernel half-widths, k, and time points, t, allowed by

the data, in this case 1 ≤ k ≤ 49, and calculated the rate index, Rt, for all time points. A

sharp rate discontinuity is visible between time points 37 and 53 where Rt > 1 (Figure 2A

third row). Finally, we determine the statistical significance for each F k
t estimate (Figure

2A fourth row). Considering all k, there is strong evidence for a revolution spanning time

points 37–57. Since the test’s resolution decreases as k increases, the most accurate estimate

is given by the smallest k at which the revolution appears, in this case k = 4 where it spans

time points 42–49 — very close to the real values of 40–50. A few statistically significant

F k
t values are seen well outside of the simulated revolution; these are false positives and we

discuss their identification below.

In this example we simulated stationary variables with a revolution that was both quite

strong and long. To see whether our method works in other kinds of series we applied it

to several sets of simulated time series and then counted the revolutions detected. In these

simulations we varied three parameters set by nature: (1) the persistence of the series, ρ,

(2) the magnitude of change in variable values during a revolution, that is, its strength, s,

and (3) the length of the revolution, l. We also varied two parameters set by investigators:

(4) the number of variables measured, n, and (5) the kernel half-width, k. (See Materials

and Methods for details). For each combination of parameters, 19,250 in all, we simulated

ten replicate populations, and then estimated the rate of false positives (Type I errors) and

false negatives (Type II errors).

We investigated the rate of false positives in series with no revolutions (s = 0). In this

subset of the simulations only three parameters vary: the persistence of the series, ρ, the

number of variables, n, and the kernal half-width, k. Here the overall number of (false)

revolutions detected should be equal to, or less than, α = 0.05. For fully stationary series

(ρ = 0), we found that this was so, however, as the series became more persistent the rate

of false positives increased, so that in random walks (ρ = 1), revolutions were detected, on

average, in 16% of the series (Figure 3A). Thus autocorrelation produces a large number of

false-positives or, to put it another way, like many econometric tests, ours requires stationary

series. Persistent series can be made stationary by taking their differences and, when we do

so, we find that the rate of false positives is, once again, equal to or below the set significance

threshold regardless of persistence (Figure 3A). Figure 2B illustrates the effect of differencing
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Figure 2: Identifying revolutions using Foote Novelty in simulated series. A. Evolution of 20 simulated stationary
time series with a revolution in the middle. B. Evolution of 20 simulated undirected random walk time series with a revolution
in the middle. In both sets of simulations the standard deviation of non-revolutionary periods is set at σ = 1. During the
revolutions, which start at time point 40, the size of the change in each time point is increased until time point 50 when the
revolution ends. The amount by which each variable, i, changes during during a revolution is drawn from a normal distribution,
di ∼ N (0, s), where s = 1 is the “revolution strength”. First row from top: Evolution of the time series. Second row:
Distance matrices among time points: dark blues are increasingly dissimilar. Third row: The rate of change index, Ri, which
is the sum of the Fk

i values for any time point i over all k, relative to the sum of the mean Fk
i values over all time points.

Fourth row: Identifying revolutions by Foote Novelty. Each cell represents the Fk
i estimate for a given half-width, k and time

point; the colour of the cell gives the relative Fk
i value, light grey being low and dark grey being high. Note that this colour

scale is only comparable within any given plot. Statistically significant (α = 0.05/2) revolutionary periods are overlain in red,
conservative periods are blue. In both cases we correctly identify a revolution in the correct region, but at larger half-widths
the resolution becomes coarser. Statistically significant time points which are not contiguous with the simulated revolution are
false positives. Note that, for the random walk series, the distance matrices, Ri and Fk

i values are all based on first differences.

This means that only revolution boundaries are expected to have high Fk
i values.

on one set of random walk time series with a revolution introduced between time points 40–

50. Now the revolution appears as spikes in F k
t and Rt marking its start and end and a set

of significant F k
t values between time points 32–41 and 46–57. Smaller k values (e.g, k = 8)

give the most accurate estimates of the revolution’s boundaries as time points 39–41 and

49–50 (Figure 2B third and fourth rows).

We investigated the rate of false negatives in all series which contained revolutions (s > 0).

When applied to levels we found that, regardless of persistence, our test fails to detect about

22% of the revolutions (Figure 3B). Differencing reduces the power of the test considerably

when applied to stationary series, but only slightly in highly persistent series (Figure 3B).

Focusing on the two extreme cases, stationary series (ρ = 0) and random walk series (ρ = 1)

made stationary by differencing we find that our method tends to fail to identify short and
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Figure 3: Performance of revolution detection by Foote Novelty based on simulated series. A. Mean Type I error
(false positive) rate as function of persistence, ρ, in series without revolutions (s = 0). When estimated on levels (solid grey
line), the observed Type I error rate quickly increases above the significance level, α = 0.05 (solid red line), but when differenced
it does not (dotted grey line). B. Mean Type II error (false negative) rate as function of persistence in series with revolutions
(s > 0). When estimated on levels (solid line), the observed Type II error rate is around 22%, but is higher when estimated
on differences, decreasing as persistence increases. C. A closer look at Type II error rates in stationary series (ρ = 0) (Top)
and first-differenced random walk series (ρ = 1) (Bottom) as as a function of the kernal half-width, k, number of variables in
the simulation, n, the strength of the revolution, s, and its length, l. These plots are an expansion of the data in B marked
with a circle. In both cases our method tends to fail to identify short and weak revolution (l ≤ 6, s ≤ 0.5 ), in data sets based
on few variables (n ≤ 10), particularly when analysed using very small half-widths (k = 1). Although the distribution of false
negatives differs somewhat between the two sets of series, the overall mean false negative rates are very similar, 22 and 23%
respectively.

weak revolution (l ≤ 6, s ≤ 0.5), in data sets based on few variables (n ≤ 10), particularly

when analysed using very small half-widths (k = 1) (Figure 3C). In order to balance the

risk of Type I and II errors when applying our test to real data we therefore recommend

that investigators first estimate the overall persistence, ρ̂, of the set of time series and, if the

series prove to be stationary or weakly persistent (ρ̂ ≤ 0.25) apply the test on levels, but if

even moderately persistent test on first differences.

The prevalence of revolutions

To illustrate our method we applied it to several real data sets. The first concerns a familiar

subject: the spread and retreat of democracy across the globe in the course of the 20th

century. In 1991 the political scientist Samuel Huntington identified three great global
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“waves” of democratization (Huntington 1991). The first wave began around 1820; the

second is associated with post-War War II de-colonization and the third began in 1974

and is associated with the collapse of European and Latin American dictatorships, the Iron

Curtain in 1989, and the spread of democracy in Africa. Huntington evidently based his

argument on a simple count of “democracies” without either defining what he meant by the

term or presenting any data. Here, using much better data, we ask whether our method can

identify the second and third of his waves.

To do this we use the V-Dem data set. This data set, the work of many scholars, rates

the degree to which the world’s nation states were democratic over the course of the 20th

century by means of a large number of ordinal variables that capture, in fine detail, the

political structure of a given state in a given year (Coppedge et al. 2016). V-Dem provides

indices where these variables have been aggregated to five higher-level quantitative variables

that capture the degree to which a state exhibits: (i) freedom of expression; (ii) freedom

of association; (iii) clean elections; (iv) an elected executive and, (v) universal suffrage (see

Materials and Methods for details). Figure 4A (top) shows the yearly means of these variables

averaged over the states extant in a given year (≤ 174). Consistent with previous V-Dem

studies (Lindberg et al. 2014; Lührmann et al. 2018), it shows that global democracy has

increased over the course of the 20th century but that the rate at which it has done so has

not been constant. We first estimated the persistence, ρ̄, of the series and, finding that it

was ≥ 0.25, took the first difference (S.I. Table 1). Our index, R, shows that the relative rate

of change was elevated in the 1940s, early 1960s and between 1974–1999 (Figure 4B). We

then carried out 3,192 significance tests over all k of which 208 were significant (α = 0.05/2),

many more than the 78 expected by chance alone, suggesting that the series contains at least

one real revolution. The years in which the rate of change is significantly higher than the

background rate fall into four nearly contiguous groups: 1944–1949, 1962, 1975–1985 and

1989–1996 which we then identify as distinct “revolutions” (S.I. Table 2).

Even when differenced, the entire series proved to be more persistent than desirable if we

wish to avoid a high rate of Type I errors (ρ̄ = 0.437), but visual examination of the data

suggested that, outside of the inferred revolutions, the series was close to stationary. To

test this idea we estimated the persistence of periods before, between and after our inferred

revolutions, and found that they were indeed acceptably non-persistent (ρ̄ = 0.255). We also

took the second differences of the entire series, which made it overall stationary (ρ̄ = −0.275),

and even so found revolutions in 1947–1948 and 1990–1992, albeit reduced in size. Thus, we

are confident that the revolutions we identified are not due to the general persistence of the

series.

These revolutions are very consistent with Huntington’s “waves”, if we allow that his
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Figure 4: Cultural Revolutions. Top row of each series: Trends of individual variables. Frequency variables are shown as
stacked plots; unbounded variables as lines normalised to the first time point. Middle row of each series: The rate of change
index, Ri which is the sum of the Fk

i values for any time point i over all k, relative to the sum of the mean Fk
i values over all

time points. Bottom row of each series: Identifying revolutions by Foote Novelty. Each cell represents the Fk
i estimate for

a given half-width, k and time point; the colour of the cell gives the relative Fk
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periods are overlain in red, conservative periods are blue. A. global democracy (s = 5); B. pop music: Billboard Hot 100, USA
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frequent features); H crime rates per hundred thousand, UK (s = 9).
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“third wave” is composed of two distinct sub-waves (c.f., Kurzman 1998; McFaul 2002; Way

2005). Interestingly, the 1962 revolution — by far the most weakly supported of the four —

is an anti-democratic one caused by military coups in Indonesia, Pakistan, Greece, Nigeria,

Turkey, and many Latin American countries. Huntington identified this phenomenon too

and labelled it a “reverse wave” as have previous V-Dem studies (Mechkova et al. 2017). But

we can add some detail to this picture. Analysis of the contributions of individual variables

shows that, where the revolution of the late 1940s was due to changes in political structures,

the 1977–1984 and 1989–1996 revolutions were due to an increase of personal liberty (S.I.

Table 3). Revolutions, unsurprisingly, differ in their natures and causes.

Thus our method can identify times of rapid political change of the sort that political

scientists and historians have spotted using less formal methods. We now turn to another

familiar phenomenon: American pop music. Pop music is also said to undergo revolutionary

change as new genres rise and fall, but unlike the spread of democracy there is little consensus

as to when those revolutions occurred and what, exactly, changed in them (Frith 1988;

Tschmuck 2006). We have previously studied the evolution of the US Billboard Hot 100,

1960–2010 (Mauch et al. 2015). In that study we assayed 17,094 songs for 16 harmonic and

timbral features and, using an earlier version of our method, claimed the existence of three

revolutions: in the mid-1960s, early 1980s, and late 1980s–early 1990s. We re-analysed these

data using our improved testing procedure and, finding that the series is highly persistent,

took the first differences. We find that Rt > 1 during 1967–1969, 1971, 1978, 1982–1983,

1986–1989, 1994–1995, 1998-2000, and 2005. We carried out 552 tests over all k of which

20 show a significantly elevated rate of change, more than the 14 expected by chance alone

(α = 0.05/2); these fall into three revolutions: 1967–1969, 1982–1983, 1986–1988. These are

very close to the revolutions that we previously identified and that are due, respectively, to

the rise of rock-related chords and timbres (aggressive percussion) in the 1960s, the revival of

guitar-heavy rock and the arrival of drum–machine percussion in the early 1980s and, in the

late 1980s, the rise of hip hop at the expense of rock and pop-related timbres (S.I. Table 3).

Note that since here we used differenced data, rather than levels, these are the boundaries of

revolutions and not, as previously, their entire span. This accounts for the small discrepancy

of dates between this analysis and the earlier one.

Besides these data sets we also applied our test to six others: the common names given to

newborn girls in the USA, 1945-2010; the car models sold in the USA, 1950–2010; the articles

published in the British Medical Journal, 1960–2008; transcripts of criminal trials at London’s

Old Bailey court, 1800–1900; American, Irish, and English novels published between 1840

and 1890; and a data set on the crimes committed in England and Wales 1900–2000 (See

Materials and Methods for details). Of these series only the girls’ names show strong evidence
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of revolutions particularly in the years 1973–1975 and 1988–1991 (Figure 4C–H; S.I. Table

3). These dates mark when a set of names — Jessica, Ashley, Lauren, Amanda, and Amber

among others — become swiftly and immensely fashionable and then, about 15 years later,

passé and replaced by names such as Emma, Isabella, Olivia and Hannah (S.I. Table 3, S.I.

Figure 1) . Of course, baby names change in frequency all the time (Lieberson 2000): it is the

fact that several of them rose and fell in tandem that makes their dynamics revolutionary.

Although some F k
t estimates are significant in most of the other series, they are sufficiently

rare that, given the number of tests carried out, they may be due to chance alone. We

wondered, however, whether some of our data sets might be susceptible to the “curse of high-

dimensionality” where distances between entities based on many features tend to equality

(Aggarwal et al. 2001). For this reason we re-examined two high-dimension data sets, the

novels and Old Bailey trials, both of which are based on more than 400 textual features

expressed as probabilities or fractions, using only the 25% most common features. For the

novels we still failed to find much evidence of revolutions. The Old Bailey trial data, however,

now showed two strong revolutions 1819–1821 and 1833–1845. The first of these revolutions is

the most interpretable. Around 1810 several synonym sets — “power”, “vicarious authority

/ commission”, “gradual change / conversion”, and “smallness” — which track each other

closely, increase sharply until about 1820 after which they decline; at the same time “relations

to kin/consanguinity” shows an reciprocal pattern (S.I. Table 3, S.I. Figure 2). These changes

may be related to a serious crisis in youth gangs at the time, one that led to a new definition

of “juvenile” crime (Shore 2015). The 1834–1845 revolution appears to be more complex

but may be partly related to the 1834 change in the court’s jurisdiction when it became

England’s central criminal court (S.I. Table 3, S.I. Figure 2). The second of these periods

also shows an unusual feature: although clearly a revolution when viewed at half-widths

between 30 and 45, at half-widths larger than 60 it appears to be significantly conservative.

This apparently paradoxical result, however, simply shows that events that are revolutionary

at one scale, need not be at others.

Revolutions aside, the evolution of Rt shows interesting patterns such as a general de-

crease in the rate of automobile evolution 1950–2000 and a steady increase in the rate of

change of crimes in England and Wales between 1960 and the 1990s. The latter is the

increase of crime rates — and, for decades, their accelerating rate of increase — that oc-

curred in Western democracies after 1960, part of what Francis Fukuyama (1991) called

“The Great Disruption”. We were initially surprised that we failed to identify this enormous

social change as a revolution, but upon reflection it is clear that we did not since the rate

increase occurred quite gradually over the course of decades. The only significant values in

this series are in the late 1990s, coincident with the sharp decline in crime rates at the time.
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We note that all these series were persistent and so we differenced prior to analysis (S.I.

Table 1); had we analysed levels instead we would have gained power and detected more

revolutions but only at the cost of an increased risk of false positives.

These examples show that our method can be applied to quite different data sets: some

are count data (e.g., baby names) while others are continuous traits (e.g., measure of democ-

racy); some aggregate many individual entities that exist only in a single time interval (e.g.,

pop songs) while others track the evolution of a collection of entities over time (e.g., the

democratic qualities of nations): all it requires is that we can estimate a distance in feature-

space between intervals in a time series. Using it we have convincingly identified revolutions

— some well known, others not — in several data sets, but not in all of them. This is as

expected. After all, revolutions are, by definition, rare.

Conclusion

We began this paper by defining a revolution as a period of time in which the multivariate

rate of change is demonstrably higher than at other times. This is most likely to occur when

several variables show simultaneous increases in the rate of change. Thus our definition

captures the classical idea of a revolution as a rapid, correlated, change in many properties

of a system. The magnitude of change in a revolution — what we have called its strength

— may be large or small in absolute terms, what matters is its size relative to the variance

of change across the entire series. The period over which it occurs — what we have called

its span — may be short or long.

A revolution cannot, however, span an entire time series. This is true even when all

variables are changing constantly. To see this consider a collection of variables changing

as directed random walks. Since each variable diverges from its original value linearly over

time, its rate of change at any time, hence D over any interval, will be, within the limits of

stochastic variation, constant as will F k
t . Thus, viewed retrospectively, although there can

be perpetually high rates of change, there are no perpetual revolutions. We can, however,

find ourselves perpetually embroiled in revolution. When evolution is super-linear — we are

thinking here of patterns such as that expressed in Moore’s law of the evolution of semi-

conductor density (Moore 1965) — the rate of change, D over any interval, and F k
t , all

increase monotonically. In such a series a revolution will shift as the series grows so that

it always defines the cutting edge. Thus there is a sense — though not, perhaps, Trotsky’s

(1931) — in which permanent revolutions can, and probably do, exist.

We have focused on identifying revolutions simply because times of great change capture

the imagination and are invariably the subject of scholarly debate. But significance levels

13



are, of course, arbitrary and the number of revolutions identified will change as they do.

They may even be dispensed with. In their absence F k
t , and its summary index, Rt, provides

a simple way of measuring, and visualising, local variation in rates of change. We note that

evolutionary biologists commonly compare rates of evolution using measures such as the

darwin and the haldane. Although both can be applied to any kind of time-series data, both

are univariate and generally estimated over an entire series (Lambert et al. 2017), and so

not well suited to estimating temporal variation in rates of multivariate evolution.

In all our data sets, all variables had non-zero values. However, it is possible to imagine

revolutions in which some variables become irrelevant even as others arise. To give a concrete

example, consider car design. Over fifty years of car evolution we detected much change,

but no revolutions. Now, however, electric cars are upon us. Some of their features are

much like those of their fossil-fuelled ancestors (e.g., door number), but some (e.g., cylinder

number, gear number) are not applicable, others can still be measured but are radically

different (e.g., the relationship between maximum torque and RPM), while yet others are

altogether new (e.g., power train battery capacity). Such changes in the salience of variables

can be handled by our method and, if they have a sufficiently swift and strong effect on

the multivariate distribution, will appear as a revolution. However, the revolution they will

surely bring about seems to be of a different kind than any involving merely quantitative

changes, however rapid, in mean horsepower or chassis length. The fundamental distinction

is between revolutions that entail changes in the relationships among variables or, more

formally, their variance-covariance structure, and those that do not. We think of the former

as “structural” revolutions (c.f. Snodgrass 1980) and the latter “non-structural”, note that

they are subsets of the revolutions that our method detects, but leave the problem of telling

them apart for future research.

Our method can be applied to identifying dramatic changes in any multivariate time

series data of sufficient length and quality. In biology it might be applied to the study of

gene expression profiles, the evolution of gene frequencies or morphology (e.g., Tu et al.

2005; Bergland et al. 2014; Hunt et al. 2015). But the idea of revolution has its origin

in historiography and so we have focused on political, social and cultural phenomena. As

large data sets capturing their evolution become available, it is increasingly possible to use

statistical inference to test historical hypotheses (e.g., Michel et al. 2011; Hughes et al. 2012;

Rodriguez Zivica et al. 2013; Perc 2013; Klingenstein et al. 2014; Rule et al. 2015; Bearman

2015). It seems to us that this methodological change is so profound that future historians

of history may even call it a revolution.
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Materials & Methods

Foote Novelty

Foote Novelty estimation, significance testing, and other procedures were implemented in R;

code is available from the authors by request.

Foote Novelty performance

We assessed the ability of our algorithm to detect revolutions in artificial data series where

the revolutionary span and strength were known. Since most series encountered will have a

degree of persistence (ρ) which lies somewhere between a white noise process (ρ = 0) and a

random walk (ρ = 1), we use the following time series process to interpolate between these

extrema,

Xi,t =



ρXi,t−1 + εt,

if t < tstart

ri + ri(t− tstart − 1)(1− ρ) + ρXi,t−1 + εt,

if t ∈ trev
ri(tend − tstart)(1− ρ) + ρXi,t−1 + εt,

if t > tend

where tstart and tend are the periods when the revolution begins and ends, respectively;

trev consists of all time points throughout the course of the revolution; εt ∼ N (0, σ). We es-

timated the probability of Type I (rate of false positives) and Type II (rate of false negatives)

errors that resulted from applying the FN algorithm to time series generated by process (1).

We varied the number of variables in our simulations, between 0 and 200 and, for each series,

we allowed a separate revolution displacement (although for all variables within a replicate,

the revolutions always began and ended at the same times). Specifically, the revolution size

for variable i is drawn from a normal distribution, ri ∼ N (0, s), where s represents the ‘revo-

lution strength’. We evaluated the performance of our revolution detection algorithm across

a range of parameter values, including the Foote Novelty kernel half-width, the number of

variables in our dataset, and the revolution strength and duration. Each simulation was run

for 100 time points, and in all cases the revolutions began at the 40th time point. We used

the following parameter combinations: persistence (ρ): 0, 0.2 ,0.4, 0.6, 0.8,1.0; revolution

strength (s): 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,1.4,1.6 ,1.8, 2.0; revolution length (l = % of series

length): 2, 6, 10, 14, 18; variable number (n): 10, 30, 50, 70, 90, 110, 130, 150, 170,190. For
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these 3850 series we estimated F k
i at kernel half-widths (k): 1, 3, 5, 7, 9. To estimate the

rate of Type I and Type II errors we used 20 replicates at each parameter set. In each case,

we applied our algorithm to the collection of variables, and recorded whether we detected at

least one revolutionary period outside the true period (a false positive), or failed to detect a

revolution anywhere in the period when it occurred (a false negative). The results of these

simulations are given in Figure 3.

Estimating persistence, ρi

To estimate the persistence of the real time series, we follow (Lambert et al. 2017), which

amounts to estimating a hierarchical Bayesian model of the form,

Xi,t ∼ N (ρiXi,t−1, σi),

ρi ∼ N (ρ′, σ′), (1)

where the population-level parameters are assigned priors: ρ′ ∼ N (0, 1) and σ′ ∼
half-N (0, 1).

Data

The pop song, clinical article, novel, car model and Old Bailey data sets consist of many

individual artefacts, each of which is represented only once in the data set, at its date of

first appearance. The properties of these artefacts are measured, and the analysis is based

on the aggregate properties of the population. The democracy, crimes, baby names data

sets consist of categories present throughout the series. The analysis is based on the relative

values, incidence or frequencies over time. Most of the data that we used have been published

elsewhere, so we only sketch their provenance. When computing pairwise distances among

years either Euclidean distance or Kullback-Leibler distance (a symmetrized version of KL

divergence) was used as appropriate; variables were scaled to have a mean = 0 and standard

deviation = 1 when appropriate.

Pop music. 17,094 unique songs comprising about 80% of the population of the US

Billboard Hot 100 1960-210. The traits are 100 harmonic and timbral topics in each.

(Mauch et al. 2015; Lambert et al. 2017). Clinical articles. 170,577 clinical articles

from British Medical Journal between 1960 and 2008. The traits are 73 Topics (Mauch

et al. 2015; Lambert et al. 2017). Novels. 2,203 novels collected by the Stanford Literary

Lab in 2015. The traits are 471 Topics (Jockers 2013; Lambert et al. 2017). Cars. 2,210
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car models sold in the USA 1950-2010. The traits are 16 quantitative variables describ-

ing the power train performance and car dimensions (Lambert et al. 2017). Democracy.

Based on the https://www.v-dem.net/en/data/data-version-7-1/ V-Dem dataset (Version

7.1) which describes the political organization of up to 174 countries between 1900 and

2015. We focused on five aggregate variables that collectively describe the degree of “pol-

yarchy” or, more colloquially, democracy. These variables measure freedom of expression

(e v2x freexp thick 5C), freedom of association (e v2x frassoc thick 5C), share of popula-

tion with suffrage e v2x suffr 5C), clean elections (e v2xel frefair 5C), and elected executive

(e v2x accex 5C) which, in turn, are aggregates of other subordinate variables (Coppedge

et al. 2016; Pemstein et al. 2017).Crime. Based on https://data.gov.uk/dataset/recorded-

crime-data-1898-2001-02/resource/b5b1c3fe-338e-472e-b844-75108c57436c crime statistics from

the UK Home Office website which records 154,300,472 crimes committed in England and

Wales 1898–2002. We truncated these to 1900–2000 and normalised them by population

size to give crime rates per 100,000 residents. The Home Office notes that the classifica-

tion of crimes has varied over time. For this reasons we used the nine summary categories:

“homicide + manslaughter”, “sexual”, “robbery”, “violence”, “burglary”, “theft”, “fraud”,

“other” which are largely immune to these changes. In any event, the increase of crime rates

after the late 1960s is a well known phenomenon not due to changes in the law or reporting

(Fukuyama 1991). Names. The most common 1,423 names given to newborn girls in the

USA 1945–2015, subsetted from the https://www.ssa.gov/oact/babynames/limits.html data

collected by the US Social Security Administration. Only names present throughout the pe-

riod were used. Old Bailey trial records. 112,485 trial records recorded between 1760 and

1913 at the Central Criminal Court, or Old Bailey, in London, a period during which trial

reports were at their most comprehensive. The traits are the frequencies of 1,040 synonym

sets based on the 20 million (semantic) words of testimony (Klingenstein et al. 2014).
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Supplementary Information

data set ρ̄u d.o. ρ̄d

global democracy (whole) 0.998 1 0.437
global democracy (non. rev.) 0.913 1 0.255
global democracy (whole) 0.998 2 -0.275
US pop music 0.875 1 -0.15
US girls’ names 0.961 1 0.070
US cars 0.629 1 -0.528
BMJ 0.814 1 -0.323
Old Bailey trials 0.573 1 -0.432
English, Irish & US novels 0.396 — —
English & Welsh crime 1.055 1 0.235

S.I. Table 1: Estimates of overall persistence on undifferenced, ρ̄u, and differenced ρ̄d, series. To avoid a rate of Type I errors
greater than the set significance value, α = 0.05, we require series to be have low persistence, ρ ≤ 0.25 (Main Text Figure 3),

and difference until we achieve that. The d.o. column gives the degree of differencing. Since the global democracy series had a

ρ > 0.25 even after first differencing we examined it further by, first, looking at the persistence of non-revolutionary (“non-rev”)
periods and, second, by taking the second differences of the whole series. In both cases we found near-stationarity showing that

the inferred revolutions are not due to the series being generally persistent. See Materials & Methods for details.

data set revolution years k
global democracy 1 1944–1948 2–20

2 1962 16
3 1977–1984 14–20
4 1989–1996 1–8

US pop music 1 1968 4–6
2 1982–1983 1–3
3 1986–1988 3–14

US girls’ names 1 1974–1975 5–17
2 1988–1991 8–20

Old Bailey trials 1 1819–1821 1–45
2 1833–1845 32–46

S.I. Table 2: Summary of revolutions detected with FN novelty. Significant FN values were found in most other series, but only

in these series were the number of significant tests greater than those expected by chance alone. Note the Old Bailey results

are based on the most frequent 25% of traits alone; considering all the traits shows no evidence of revolutions.
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data set revolution years trait direction

global democracy 1 1944–1948 free and fair elections ↑
1 share of population with suffrage ↑
1 elected executive ↑
3 1977–1984 freedom of expression ↑
3 freedom of association ↑
4 1989–1996 freedom of association ↑
4 freedom of expression ↑

US pop music 1 1968 h3 – minor 7th chords ↑
h4 – standard diatonic chords ↑
t1 – drums, aggressive, percussive ↑

2 1982–1983 t1 – drums, aggressive, percussive ↑
t5 – guitar, loud, energetic ↑

3 1986–1988 t1 – drums, aggressive, percussive ↓
t3 – energetic, speech, bright ↑
t7 – /oh/, rounded, mellow ↓

US girls’ names 1 1974–1975 Jessica ↑
Amanda ↑
Sarah ↑
Amber ↑
Ashley ↑
Lauren ↑
Michelle ↑
Amy ↑
Jamie ↑
Mary ↓
Megan ↑

2 1988–1991 Jessica ↓
Emma ↑
Ashley ↓
Amanda ↓
Alexia ↑
Isabella ↑
Olivia ↑
Hannah ↑
Mary ↓

Old Bailey trials 1 1819–1821 ss11 – relations of kindred. consanguinity ↑
ss157 – power ↓
ss755 – vicarious authority / commission ↓
ss144 – gradual change to something different / conversion ↓
ss32 – smallness ↓

2 1833 –1845 ss794 – barter ↓
ss36 – nonincrease/decrease ↓
ss605 – irresolution ↑
ss32 – smallness ↓
ss965 – jurisdiction / executive ↑
ss541 – learner ↓ ↑
ss570 – perspicuity ↓
ss995 – churchdom ↑

S.I. Table 3: Variables that contribute most to revolutions ordered in terms of importance from high to low . US girls’ names:

Only names that, when removed, decreased the number of significant Fk
i values by ≥ 25% in a given revolution are listed. Old

Bailey trials: Only variables that, when removed, decreased the number of statistically significant Fk
i values by ≥ 35% in a

given revolution are listed.
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S.I. Figure 5: US girls’ names: Only names that, when removed, decreased the number of significant Fk
i values by ≥ 25% in a

given revolution are listed.
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S.I. Figure 6: Old Bailey trials: variables that contributed most to the 1819-1821 and 1833-1844 revolutions. Only variables
that, when removed, decreased the number of statistically significant Fk

i values by ≥ 35% in a given revolution are listed.
The 1819–1821 revolution is largely driven by variables related to changes in the treatment of juvenile crime; the 1834-1844

revolution is partly driven by changes in court jurisdiction.

26


